skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Dinh C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes a novel intelligent human activity recognition (HAR) framework based on a new design of Federated Split Learning (FSL) with Differential Privacy (DP) over edge networks. Our FSL-DP framework leverages both accelerometer and gyroscope data, achieving significant improvements in HAR accuracy. The evaluation includes a detailed comparison between traditional Federated Learning (FL) and our FSL framework, showing that the FSL framework outperforms FL models in both accuracy and loss metrics. Additionally, we examine the privacy-performance trade-off under different data settings in the DP mechanism, highlighting the balance between privacy guarantees and model accuracy. The results also indicate that our FSL framework achieves faster communication times per training round compared to traditional FL, further emphasizing its efficiency and effectiveness. This work provides valuable insight and a novel framework which was tested on a real-life dataset. 
    more » « less
    Free, publicly-accessible full text available January 10, 2026
  2. This paper presents a novel approach for classifying electrocardiogram (ECG) signals in healthcare applications using federated learning and stacked convolutional neural networks (CNNs). Our innovative technique leverages the distributed nature of federated learning to collaboratively train a high-performance model while preserving data privacy on local devices. We propose a stacked CNN architecture tailored for ECG data, effectively extracting discriminative features across different temporal scales. The evaluation confirms the strength of our approach, culminating in a final model accuracy of 98.6% after 100 communication rounds, significantly exceeding baseline performance. This promising result paves the way for accurate and privacy-preserving ECG classification in diverse healthcare settings, potentially leading to improved diagnosis and patient monitoring. 
    more » « less
    Free, publicly-accessible full text available December 17, 2025